A matrix is in row echelon form if and only if

the first (leftmost) non-zero entry in each row is 1 (called the leading 1),

the leading 1 in each row (except row 1) is to the right of the leading 1 in the row above it, and all rows which contain only 0 are below all rows which contain any non-zero entry.

A matrix in REF corresponds to a system of equations that needs only back-substitution to solve.

Are these matrices in REF? If not, why not?

Γ	1	3	0	-2	47	1	3	0	-2	4	1	3	0	-2	$\begin{bmatrix} 4 \\ 0 \\ -2 \\ 3 \end{bmatrix}$	1	3	0	-2	4
	0	1	7	4	0	0	1	7	4	0	0	1	7	0	0	0	1	7	4	0
	0	0	-1	5	6	0	1	4	-3	-2	0	0	1	0	-2	0	0	0	1	-2
	0	0	0	1	3	0	0	1	1	3	0	0	0	1	3	0	0	0	0	0

Reduced Row Echelon Form (RREF)

A matrix is in reduced row echelon form if and only if

it is in row echelon form.

and all columns which contain a leading 1 contain only 0 in all other entries.

A matrix in RREF corresponds to a system of equations that needs the least amount of algebra to solve.

Are these matrices in RREF? If not, why not?

1	0	-1	-2	4	$\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	0	0	0	47	1	0	-3	0	4
0	1	0	4	0	0	1	0	0	0	0	1	8	0	0
0	0	1	5	6	0	0	1	0	-2	0	0	0	1	6
0	0	0	0	0	0	0	0	1	3	0	0	0	0	0

Gaussian Elimination Pivot Method

Step 1: Find the first (leftmost) column which contains a non-zero entry

Step 2: Choose a pivot in that column (to be used to replace all lower entries in that column with 0)

Step 3: SWAP to move the pivot's row to the top

Step 4: SCALE to turn the pivot into 1

Step 5: REPLACE each row below the pivot's row

by adding the multiple of the pivot's row which gives a 0 under the pivot

Step 6: Cover up the pivot's row & repeat the entire process (stop when matrix is in row echelon form)

Gauss-Jordan Elimination (after matrix is in row echelon form)

Step 7: Find the last (rightmost) column which contains a pivot (leading 1)

Step 8: REPLACE each row above the pivot's row

by adding the multiple of the pivot's row which gives a 0 above the pivot

Step 9: Cover up the pivot's row & repeat the entire process (stop when matrix is in reduced row echelon form)

Example 3:

The following examples should not require fractions if solved using the processes above.

Example 1: Example 2:

$$3x + 2y - z = -1$$
 $4x + 6y - 3z = -15$ $3x + 4y - 11z = -17$
 $5x + y - 3z = -2$ $3x + 4y + z = 11$ $2x + y - 4z = 5$
 $2x + 4y + 2z = 2$ $-x - 2y + z = 1$ $-x - 2y + 5z = -9$

Example 5:

Example 4:

$$3x + 5y - 9z = 14$$
 $2x + 4y + 11z = 10$
 $2x - 3y + 13z = 3$ $x + 2y + 7z = 5$
 $-x + 2y - 8z = -1$ $3x + 4y + 9z = 13$

CHOOSE 2 in column 1, row 3 as pivot (to avoid fractions after scaling)

$$\begin{bmatrix} 3 & 2-1-1 \\ 5 & 1-3-2 \end{bmatrix}$$

SWAP to move pivot to top row

$$\begin{bmatrix} 2 & 4 & 2 & 2 \\ 5 & 1 - 3 - 2 \\ 3 & 2 - 1 - 1 \end{bmatrix} R_1 \times \frac{1}{2}$$

$$\begin{bmatrix} \begin{array}{c|cc} \hline{1} & 2 & 1 & 1 \\ 5 & 1-3-2 & R_2 + (-5)R_1 & \Rightarrow \\ 3 & 2-1-1 & R_3 + (-3)R_1 \end{array} \Rightarrow$$

REPLACE to eliminate all entries below pivot

COVER row 1 until matrix in REF CHOOSE − 4 in column 2, row 3 as pivot

(to avoid fractions after scaling)

$$\begin{array}{|c|c|c|c|c|}
\hline
1 & 2 & 1 & 1 \\
\hline
0 - 9 - 8 - 7 \\
0 \hline
4 & 4 - 4 \\
R_2 \leftrightarrow R_3
\end{array}$$

SWAP to move pivot to top row

$$\begin{array}{|c|c|c|c|c|c|}
\hline
 & 1 & 2 & 1 & 1 \\
\hline
 & 0 & 4 & 4 & 4 \\
\hline
 & 0 & 9 & 8 & 7
\end{array}$$

SCALE to turn pivot into 1

REPLACE to eliminate all entries below pivot

COVER row 2 until matrix in REF

CHOOSE 1 in column 3, row 3 as pivot

$$\begin{bmatrix}
 1 & 2 & 1 & 1 \\
 0 & 1 & 1 & 1 \\
 0 & 0 & 1 & 2
 \end{bmatrix}$$

SWAP to move pivot to top row UNNECESSARY

SCALE to turn pivot into 1 UNNECESSARY

$$\begin{bmatrix} 1 & 2 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 2 \end{bmatrix} R_1 + (-1)R_3 \Rightarrow \begin{bmatrix} 1 & 2 & 0 - 1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 2 \end{bmatrix} R_1 + (-2)R_2$$

REPLACE to eliminate all entries above pivot

COVER row 3 until matrix in RREF

Rightmost leading 1 in column 3 is pivot Rightmost leading 1 in column 2 is pivot

$$\begin{bmatrix} 1 & 2 & 0 & -1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 2 \end{bmatrix} R_1 + (-2)R_2 \Rightarrow$$

REPLACE to eliminate all entries above pivot

COVER row 2 until matrix in RREF

$$\begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 2 \end{bmatrix} \text{ RREF } \Rightarrow \begin{cases} x = 1 \\ y = -1 \\ z = 2 \end{cases}$$

 \Rightarrow

3(1) + 2(-1) - (2) = 3 - 2 - 2 = 1CHECK: 5(1) + (-1) - 3(2) = 5 - 1 - 6 = -2

$$3(1) + (-1) - 3(2) = 3 - 1 - 6 = -2$$

 $2(1) + 4(-1) + 2(2) = 2 - 4 + 4 = 2$